

PROBLEM 4.1

Knowing that the couple shown acts in a vertical plane, determine the stress at (a) point $A,(b)$ point B.

SOLUTION

For rectangle: $\quad I=\frac{1}{12} b h^{3}$
Outside rectangle: $\quad I_{1}=\frac{1}{12}(80)(120)^{3}$

$$
I_{1}=11.52 \times 10^{6} \mathrm{~mm}^{4}=11.52 \times 10^{-6} \mathrm{~m}^{4}
$$

Cutout:

$$
\begin{aligned}
& I_{2}=\frac{1}{12}(40)(80)^{3} \\
& I_{2}=1.70667 \times 10^{6} \mathrm{~mm}^{4}=1.70667 \times 10^{-6} \mathrm{~m}^{4}
\end{aligned}
$$

Section:

$$
I=I_{1}-I_{2}=9.81333 \times 10^{-6} \mathrm{~m}^{4}
$$

(a) $y_{A}=40 \mathrm{~mm}=0.040 \mathrm{~m}$

$$
\sigma_{A}=-\frac{M y_{A}}{I}=-\frac{\left(15 \times 10^{3}\right)(0.040)}{9.81333 \times 10^{-6}}=-61.6 \times 10^{6} \mathrm{~Pa}
$$

(b) $\quad y_{B}=-60 \mathrm{~mm}=-0.060 \mathrm{~m}$

$$
\begin{array}{r}
\sigma_{B}=-\frac{M y_{B}}{I}=-\frac{\left(15 \times 10^{3}\right)(-0.060)}{9.81333 \times 10^{-6}}=91.7 \times 10^{6} \mathrm{~Pa} \\
\sigma_{B}=91.7 \mathrm{MPa}
\end{array}
$$

PROBLEM 4.11

Two vertical forces are applied to a beam of the cross section shown. Determine the maximum tensile and compressive stresses in portion $B C$ of the beam.

SOLUTION

Neutral axis lies 25 mm above the base.

$$
\begin{aligned}
y_{\text {top }} & =35 \mathrm{~mm}=0.035 \mathrm{~m} \quad y_{\text {bot }}=-25 \mathrm{~mm}=-0.025 \mathrm{~m} \\
a & =150 \mathrm{~mm}=0.150 \mathrm{~m} \quad P=10 \times 10^{3} \mathrm{~N} \\
M & =P a=\left(10 \times 10^{3}\right)(0.150)=1.5 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

$\sigma_{\text {top }}=-102.4 \mathrm{MPa}$ (compression)

$$
\sigma_{\mathrm{bot}}=73.2 \mathrm{MPa} \text { (tension) }
$$

SOLUTION

	$A, \mathrm{~mm}^{2}$	$\bar{y}_{0}, \mathrm{~mm}$	$A \bar{y}_{0}, \mathrm{~mm}^{3}$	$d, \mathrm{~mm}$
(1)	2160	27	58,320	3
(2)	1080	36	38,880	3
Σ	3240		97,200	

$\bar{Y}=\frac{97,200}{3240}=30 \mathrm{~mm} \quad$ The neutral axis lies 30 mm above the bottom.

$$
\begin{aligned}
y_{\text {top }} & =54-30=24 \mathrm{~mm}=0.024 \mathrm{~m} \quad y_{\text {bot }}=-30 \mathrm{~mm}=-0.030 \mathrm{~m} \\
I_{1} & =\frac{1}{12} b_{1} h_{1}^{3}+A_{1} d_{1}^{2}=\frac{1}{12}(40)(54)^{3}+(40)(54)(3)^{2}=544.32 \times 10^{3} \mathrm{~mm}^{4} \\
I_{2} & =\frac{1}{36} b_{2} h_{2}^{2}+A_{2} d_{2}^{2}=\frac{1}{36}(40)(54)^{3}+\frac{1}{2}(40)(54)(6)^{2}=213.84 \times 10^{3} \mathrm{~mm}^{4} \\
I & =I_{1}+I_{2}=758.16 \times 10^{3} \mathrm{~mm}^{4}=758.16 \times 10^{-9} \mathrm{~m}^{4} \\
|\sigma| & =\left|\frac{M y}{I}\right| \quad|M|=\left|\frac{\sigma I}{y}\right|
\end{aligned}
$$

Top: (tension side)

$$
M=\frac{\left(120 \times 10^{6}\right)\left(758.16 \times 10^{-9}\right)}{0.024}=3.7908 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}
$$

Bottom: (compression)

$$
M=\frac{\left(150 \times 10^{6}\right)\left(758.16 \times 10^{-9}\right)}{0.030}=3.7908 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}
$$

Choose the smaller as $M_{\text {all }}$.

$$
M_{\mathrm{all}}=3.7908 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}
$$

$$
M_{\mathrm{all}}=3.79 \mathrm{kN} \cdot \mathrm{~m}
$$

PROBLEM 4.24

A $60-\mathrm{N} \cdot \mathrm{m}$ couple is applied to the steel bar shown. (a) Assuming that the couple is applied about the z axis as shown, determine the maximum stress and the radius of curvature of the bar. (b) Solve part a, assuming that the couple is applied about the y axis. Use $E=200 \mathrm{GPa}$.

SOLUTION

(a) Bending about z-axis.

$$
\begin{aligned}
& I=\frac{1}{12} b h^{3}=\frac{1}{12}(12)(20)^{3}=8 \times 10^{3} \mathrm{~mm}^{4}=8 \times 10^{-9} \mathrm{~m}^{4} \\
& c=\frac{20}{2}=10 \mathrm{~mm}=0.010 \mathrm{~m} \\
& \sigma=\frac{M c}{I}=\frac{(60)(0.010)}{8 \times 10^{-9}}=75.0 \times 10^{6} \mathrm{~Pa} \\
& \frac{1}{\rho}=\frac{M}{E I}=\frac{60}{\left(200 \times 10^{9}\right)\left(8 \times 10^{-9}\right)}=37.5 \times 10^{-3} \mathrm{~m}^{-1}
\end{aligned}
$$

$$
\sigma=75.0 \mathrm{MPa}
$$

$$
\rho=26.7 \mathrm{~m}
$$

(b) Bending about y-axis.

$$
\begin{aligned}
& I=\frac{1}{12} b h^{3}=\frac{1}{12}(20)(12)^{3}=2.88 \times 10^{3} \mathrm{~mm}^{4}=2.88 \times 10^{-9} \mathrm{~m}^{4} \\
& c=\frac{12}{2}=6 \mathrm{~mm}=0.006 \mathrm{~m} \\
& \sigma=\frac{M c}{I}=\frac{(60)(0.006)}{2.88 \times 10^{-9}}=125.0 \times 10^{6} \mathrm{~Pa} \\
& \frac{1}{\rho}=\frac{M}{E I}=\frac{60}{\left(200 \times 10^{9}\right)\left(2.88 \times 10^{-9}\right)}=104.17 \times 10^{-3} \mathrm{~m}^{-1} \quad \sigma=125.0 \mathrm{MPa}
\end{aligned}
$$

SOLUTION

For W 200×31.3 rolled steel section,

$$
\begin{aligned}
I & =31.3 \times 10^{6} \mathrm{~mm}^{4} \\
& =31.3 \times 10^{-6} \mathrm{~m}^{4}
\end{aligned}
$$

(a) $\frac{1}{\rho}=\frac{M}{E I}=\frac{45 \times 10^{3}}{\left(200 \times 10^{9}\right)\left(31.3 \times 10^{-6}\right)}=7.1885 \times 10^{-3} \mathrm{~m}^{-1}$

$$
\rho=139.1 \mathrm{~m}
$$

(b) $\frac{1}{\rho^{\prime}}=v \frac{1}{\rho}=(0.29)\left(7.1885 \times 10^{-3}\right)=2.0847 \times 10^{-3} \mathrm{~m}^{-1}$

$$
\rho^{\prime}=480 \mathrm{~m}
$$

SOLUTION

Use aluminum as the reference material.

$$
\begin{aligned}
& n=1.0 \text { in aluminum } \\
& n=E_{b} / E_{a}=105 / 70=1.5 \text { in brass }
\end{aligned}
$$

For the transformed section,

$$
\begin{aligned}
& I_{1}=\frac{n_{1}}{12} b_{1} h_{1}^{3}+n_{1} A_{1} d_{1}^{2} \\
&=\frac{1.5}{12}(30)(6)^{3}+(1.5)(30)(6)(18)^{3}=88.29 \times 10^{3} \mathrm{~mm}^{4} \\
& I_{2}=\frac{n_{2}}{12} b_{2} h_{2}^{3}=\frac{1.0}{12}(30)(30)^{3}=67.5 \times 10^{3} \mathrm{~mm}^{4} \\
& I_{3}=I_{1}=88.29 \times 10^{3} \mathrm{~mm}^{4} \\
& I=I_{1}+I_{2}+I_{3}=244.08 \times 10^{3} \mathrm{~mm}^{4} \\
& \quad=244.08 \times 10^{-9} \mathrm{~m}^{4} \\
&|\sigma|=\left|\frac{n M y}{I}\right| \quad M=\frac{\sigma I}{n y}
\end{aligned}
$$

Aluminum: $\quad n=1.0, \quad y=15 \mathrm{~mm}=0.015 \mathrm{~m}, \quad \sigma=100 \times 10^{6} \mathrm{~Pa}$

$$
M=\frac{\left(100 \times 10^{6}\right)\left(244.08 \times 10^{-9}\right)}{(1.0)(0.015)}=1.627 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}
$$

Brass:

$$
\begin{gathered}
n=1.5, \quad y=21 \mathrm{~mm}=0.021 \mathrm{~m}, \quad \sigma=160 \times 10^{6} \mathrm{~Pa} \\
M=\frac{\left(160 \times 10^{6}\right)\left(244.08 \times 10^{-9}\right)}{(1.5)(0.021)}=1.240 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}
\end{gathered}
$$

Choose the smaller value $\quad M=1.240 \times 10^{3} \mathrm{~N} \cdot \mathrm{~m}$

PROBLEM 4.40

A copper strip ($E_{c}=105 \mathrm{GPa}$) and an aluminum strip ($E_{a}=75 \mathrm{GPa}$) are bonded together to form the composite beam shown. Knowing that the beam is bent about a horizontal axis by a couple of moment $M=35 \mathrm{~N} \cdot \mathrm{~m}$, determine the maximum stress in (a) the aluminum strip, (b) the copper strip.

SOLUTION

Use aluminum as the reference material.

$$
\begin{aligned}
& n=1.0 \text { in aluminum } \\
& n=E_{c} / E_{a}=105 / 75=1.4 \text { in copper }
\end{aligned}
$$

Transformed section:

	$A, \mathrm{~mm}^{2}$	$n A, \mathrm{~mm}^{2}$	$A \bar{y}_{0}, \mathrm{~mm}$	$n A \bar{y}_{0}, \mathrm{~mm}^{3}$
(1)	216	216	7.5	1620
(2)	72	100.8	1.5	151.8
Σ		316.8		1771.2

$$
\bar{Y}_{0}=\frac{1771.2}{316.8}=5.5909 \mathrm{~mm}
$$

The neutral axis lies 5.5909 mm above the bottom.

$$
\begin{aligned}
I_{1} & =\frac{n_{1}}{12} b_{1} h_{1}^{3}+n_{1} A_{1} d_{1}^{2}=\frac{1.0}{12}(24)(9)^{3}+(1.0)(24)(9)(1.9091)^{2}=2245.2 \mathrm{~mm}^{4} \\
I_{2} & =\frac{n_{2}}{12} b_{2} h_{2}^{3}+n_{2} A_{2} d_{2}^{2}=\frac{1.4}{12}(24)(3)^{3}+(1.4)(24)(3)(4.0909)^{2}=1762.5 \mathrm{~mm}^{4} \\
I & =I_{1}+I_{2}=4839 \mathrm{~mm}^{4}=4.008 \times 10^{-9} \mathrm{~m}^{4}
\end{aligned}
$$

(a) Aluminum: $\quad n=1.0, \quad y=12-5.5909=6.4091 \mathrm{~mm}=0.0064091$

$$
\begin{aligned}
\sigma=-\frac{n M y}{I}=-\frac{(1.0)(35)(0.0064091)}{4.008 \times 10^{-9}} & =-56.0 \times 10^{-6} \mathrm{~Pa} \\
& =-56.0 \mathrm{MPa}
\end{aligned}
$$

$$
\sigma=-56.0 \mathrm{MPa}
$$

(b) Copper: $\quad n=1.4, \quad y=-5.5909 \mathrm{~mm}=-0.0055909 \mathrm{~m}$

$$
\begin{aligned}
\sigma=-\frac{n M y}{I}=-\frac{(1.4)(35)(-0.0055909)}{4.008 \times 10^{-9}} & =68.4 \times 10^{6} \mathrm{~Pa} \\
= & 68.4 \mathrm{MPa}
\end{aligned}
$$

$$
\sigma=68.4 \mathrm{MPa}
$$

PROBLEM 4.52

A concrete beam is reinforced by three steel rods placed as shown. The modulus of elasticity is 20 GPa for the concrete and 200 GPa for the steel. Using an allowable stress of 9 MPa for the concrete and 140 MPa for the steel, determine the largest allowable positive bending moment in the beam.

SOLUTION

$$
\begin{aligned}
n & =\frac{E_{s}}{E_{c}}=\frac{200 \mathrm{GPa}}{20 \mathrm{GPa}}=10 \\
A_{s} & =3 \frac{\pi}{4} d^{2}=3 \frac{\pi}{4}(22)^{2}=1140 \mathrm{~mm}^{2} \\
n A_{s} & =11400 \mathrm{~mm}^{2}
\end{aligned}
$$

Locate neutral axis

$$
\begin{aligned}
& 200 x \frac{x}{2}-(11400)(350-x)=0 \\
& 100 x^{2}+11400 x-3,990,00=0
\end{aligned}
$$

$350-x=199.28 \mathrm{~mm}$

$$
\begin{aligned}
I & =\frac{1}{3} 200 x^{3}+n A_{s}(350-x)^{2}=\frac{1}{3}(200)(150.72)^{3}+(11400)(199.28)^{2} \\
& =681 \times 10^{6} \mathrm{~mm}^{4} \\
|\sigma| & =\left|\frac{n M y}{I}\right| \quad \therefore \quad M=\frac{\sigma I}{n y}
\end{aligned}
$$

Concrete:

$$
\begin{aligned}
n & =1.0, \quad|y|=150.72 \mathrm{in}, \quad|\sigma|=9 \mathrm{MPa} \\
M & =\frac{\left(9 \times 10^{6}\right)\left(681 \times 10^{-6}\right)}{(1.0)(0.15072)}=40664 \mathrm{~N} \cdot \mathrm{~m}=407 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Steel:

$$
n=10, \quad|y|=199.28, \quad \sigma=140 \mathrm{MPa}
$$

$$
M=\frac{\left(140 \times 10^{6}\right)\left(681 \times 10^{-6}\right)}{(10)(0.19928)}=478.42 \mathrm{~N} \cdot \mathrm{~m}=47.8 \mathrm{kN} \cdot \mathrm{~m}
$$

Choose the smaller value.

$$
M=40.7 \mathrm{kN} \cdot \mathrm{~m}
$$

PROBLEM 4.59

The rectangular beam shown is made of a plastic for which the value of the modulus of elasticity in tension is one-half of its value in compression. For a bending moment $M=600 \mathrm{~N} \cdot \mathrm{~m}$, determine the maximum (a) tensile stress, (b) compressive stress.

SOLUTION

$n=\frac{1}{2}$ on the tension side of neutral axis
$n=1$ on the compression side
Locate neutral axis.

$$
\begin{aligned}
& n_{1} b x \frac{x}{2}-n_{2} b(h-x) \frac{h-x}{2}=0 \\
& \frac{1}{2} b x^{2}-\frac{1}{4} b(h-x)^{2}=0 \\
& x^{2}= \frac{1}{2}(h-x)^{2} \quad x=\frac{1}{\sqrt{2}}(h-x) \\
& x= \frac{1}{\sqrt{2}+1} h=0.41421 h=41.421 \mathrm{~mm} \\
& h-x= 58.579 \mathrm{~mm} \\
& I_{1}= n_{1} \frac{1}{3} b x^{3}=(1)\left(\frac{1}{3}\right)(50)(41.421)^{3}=1.1844 \times 10^{6} \mathrm{~mm}^{4} \\
& I_{2}= n_{2} \frac{1}{3} b(h-x)^{3}=\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)(50)(58.579)^{3}=1.6751 \times 10^{6} \mathrm{~mm}^{4} \\
& I= I_{1}+I_{2}=2.8595 \times 10^{6} \mathrm{~mm}^{4}=2.8595 \times 10^{-6} \mathrm{~m}^{4}
\end{aligned}
$$

(a) Tensile stress: $\quad n=\frac{1}{2}, \quad y=-58.579 \mathrm{~mm}=-0.058579 \mathrm{~m}$

$$
\sigma=-\frac{n M y}{I}=-\frac{(0.5)(600)(-0.058579)}{2.8595 \times 10^{-6}}=6.15 \times 10^{6} \mathrm{~Pa} \quad \sigma_{t}=6.15 \mathrm{MPa}
$$

(b) Compressive stress: $\quad n=1, \quad y=41.421 \mathrm{~mm}=0.041421 \mathrm{~m}$

$$
\sigma=-\frac{n M y}{I}=-\frac{(1.0)(600)(0.041421)}{2.8595 \times 10^{-6}}=-8.69 \times 10^{6} \mathrm{~Pa} \quad \sigma_{c}=-8.69 \mathrm{MPa}
$$

PROBLEM 4.65

A couple of moment $M=2 \mathrm{kN} \cdot \mathrm{m}$ is to be applied to the end of a steel bar. Determine the maximum stress in the bar (a) if the bar is designed with grooves having semicircular portions of radius $r=10 \mathrm{~mm}$, as shown in Fig. a, (b) if the bar is redesigned by removing the material to the left and right of the dashed lines as shown in Fig. b.

SOLUTION

For both configurations,

$$
\begin{aligned}
D & =150 \mathrm{~mm} \\
d & =100 \mathrm{~mm} \\
r & =10 \mathrm{~mm} \\
\frac{D}{d} & =\frac{150}{100}=1.50 \\
\frac{r}{d} & =\frac{10}{100}=0.10
\end{aligned}
$$

For configuration (a),
Fig. 4.28 gives

$$
K_{a}=2.21
$$

For configuration (b), Fig. 4.27 gives $\mathrm{K}_{b}=1.79$.

$$
\begin{aligned}
& I=\frac{1}{12} b h^{3}=\frac{1}{12}(18)(100)^{3}=1.5 \times 10^{6} \mathrm{~mm}^{4}=1.5 \times 10^{-6} \mathrm{~m}^{4} \\
& c=\frac{1}{2} d=50 \mathrm{~mm}=0.05 \mathrm{~m}
\end{aligned}
$$

(a) $\sigma=\frac{K M c}{I}=\frac{(2.21)\left(2 \times 10^{3}\right)(0.05)}{1.5 \times 10^{-6}}=147.0 \times 10^{6} \mathrm{~Pa}=147.0 \mathrm{MPa}$

$$
\sigma=147.0 \mathrm{MPa}
$$

(b) $\quad \sigma=\frac{K M c}{I}=\frac{(1.79)\left(2 \times 10^{3}\right)(0.05)}{1.5 \times 10^{-6}}=119.0 \times 10^{6} \mathrm{~Pa}=119.0 \mathrm{MPa}$

$$
\sigma=119.0 \mathrm{MPa}
$$

